Year : 2018  |  Volume : 17  |  Issue : 3  |  Page : 223-236

Ameliorating effect of green tea, sage, and their mixture against methomyl-induced physiological, biochemical, and histopathological alterations in male rats

Environmental Toxicology Research Unit (ETRU), Pesticide Chemistry Department, National Research Centre, Dokki, Giza, Egypt

Correspondence Address:
Dr. Amina R Ali
33 El Buhouth Street, Ad Doqi, Dokki, Cairo Governorate 12622
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/epj.epj_26_18

Rights and Permissions

Background and objectives Methomyl (MET) [S-methyl N-(methylcarbamoyloxy) thioacetimidate; C5H10N2O2S] is one of the most important carbamate (oximes) insecticides that is extensively used around the world. Carbamate compounds are known to cause an alteration in biochemical parameters and affect the oxidative status of the body through producing free radicals. Many antioxidants have been used to ameliorate the toxic effect of pesticides, but the search for such compounds will always be an urgent need to achieve the optimum degree of amelioration. For this purpose, the present study was designed to evaluate the ameliorating effect of green tea extract (GTE) (Camellia sinensis), sage extract (SE) (Salvia officinalis) and their mixture (GTE+SE) against MET-induced toxicity in male rats. Materials and methods A total of 60 rats (Rattus norvegicus) were divided into 12 groups: one negative control group (water); three positive control groups (GTE, SE, and GTE+SE) as the sole drinking source throughout the experimental duration (28 days); two groups administered MET orally at a dose equivalent to the acceptable daily intake and 10× acceptable daily intake; two groups were specified for GTE with MET two doses; two groups for SE with MET two doses; and two groups for GTE+SE with MET two doses. At the end of the experiment, blood samples were collected for measuring biochemical parameters for liver and kidney, as well as antioxidant enzymes. Results and conclusion The insecticide caused high elevation in aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, urea, creatinine and malondialdehyde levels, and high decline in the levels of butyrylcholinesterase, superoxide dismutase, and total antioxidant capacity. Alterations in these biochemical markers occurred in a dose-dependent manner and were referred to the oxidative stress induced by MET. Co-administration of GTE or SE in conjunction with MET brought most of the tested biochemical parameters to their normal levels, but the mixture (GTE+SE) resulted in superior ameliorating effects as compared with each of the individual extracts. The study introduced novel findings regarding to the protective effect of GTE, SE, and their mixture against MET-induced toxicity in rats.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded246    
    Comments [Add]    

Recommend this journal