Year : 2017  |  Volume : 16  |  Issue : 2  |  Page : 103-111

Harpullia pendula Planch leaves: phenolics, in vitro antioxidant and α-amylase inhibitory activity

1 Department of Natural Compounds Chemistry, National Research Center, Dokki, Egypt
2 Department of Pharmacognosy, National Research Center, Dokki, Egypt
3 Department of Medicinal and Aromatic Plants Research, National Research Center, Dokki, Egypt

Correspondence Address:
Sahar S.M. El Souda
Department of Natural Compounds Chemistry, National Research Center, 33 El Bohouth Street (Former El Tahrir Street), PO Box - 12622, Dokki, Giza, 12311
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/epj.epj_10_17

Rights and Permissions

Background and objective Harpullia pendula Planch leaves belong to the Sapindaceae family. The study aimed to investigate the phenolic constituents and evaluate the antioxidant and α-amylase inhibitory activities of the plant’s extracts and its major compounds. Materials and methods The compounds were isolated through chromatographic techniques from the defatted ethanolic extract (DAEE). Their structures were determined by ultraviolet, mass spectrometer, and nuclear magnetic resonance spectroscopy. Results The flavonoids kaempferol 3-O-(6″galloyl)- apiofuranosyl (1‴→2″)-β-galactopyranoside, kaempferol-3-O-β-glucopyranosyl(1‴→6″)-β-glucopyranoside, kaempferol 3-O-(6″galloyl)-apiofuranosyl (1‴→2″)-β-galactopyranoside, rutin, vitexin, isovitexin, orientin, quercetin, kaempferol; the tannins ellagic acid, gallic acid, methyl gallate, 2,6-di-O-galloyl(α/β)glucoside, 2,3-di-O-galloyl(α/β)glucoside, and tetragalloyl glucoside in addition to two benzene acetic acid derivatives, harpulliaside A and cavaol B, were isolated from the total bioactive ethanolic extract (TEE). The TEE and the DAEE of H. pendula have a total phenolic content of 255.5±7.18 and 222.9±6.43 mg gallic acid equivalents/g extract, respectively, and a total flavonoid content of 111.6±3.2 and 102.6±2.6 mg quercetin equivalents/g extract, respectively. With respect to the in vitro study, DAEE, TEE, and methyl gallate showed an interesting inhibitory activity on 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) [half maximal inhibitory concentration (IC50): 13.3±0.4, 17.7±0.7, and 19.4±0.08 µg/ml, respectively], nitric oxide (IC50: 12.8±2.54, 18.3±1.6, and 29.8±1.00 µg/ml, respectively), and α-amylase (IC50: 6.1±0.554, 14.4±0.681, and17.5±0.003 µg/ml, respectively). Conclusion H. pendula extracts are rich in phenolic compounds; the aforementioned results suggest that DAEE, TEE, and methyl gallate may be potentially useful in hegemony of obesity and diabetes.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded233    
    Comments [Add]    
    Cited by others 3    

Recommend this journal