ORIGINAL ARTICLE |
|
Year : 2017 | Volume
: 16
| Issue : 3 | Page : 157-167 |
|
Physicochemical characterization of olmesartan medoxomil: polymer solid dispersions by hot melt extrusion for dissolution rate enhancement
Zaheer Abbas1, N.G. Nanjunda Swamy2
1 Formulation Development Department, Apotex Research Private Limited, Bangalore, India 2 Retd. Professor, Department of Pharmaceutics, Government College of Pharmacy, Bangalore, India
Correspondence Address:
Zaheer Abbas Apotex Research Private Limited, Site 1 and 2, Bommasandra Industrial Area, 4th Phase, Jigani Link Road, Bangalore 560099, Karnataka India
 Source of Support: None, Conflict of Interest: None  | Check |
DOI: 10.4103/epj.epj_17_17
|
|
Aim The prime objective of this investigation was to improve solubility and dissolution rate of poorly water-soluble drug, olmesartan medoxomil, by preparation of stable solid dispersions (SDs) of low glass transition temperature employing hot-melt extrusion technique.
Materials and methods Soluplus (SOL) was used as a primary solubilizing agent along with different solubility/absorption enhancers such as polyethylene glycol (PEG)-8000 and Kolliphor F127. After extrusion, the extrudates were pelletized, and physical state of the drug was assessed using powder X-ray diffraction and differential scanning calorimetry techniques.
Results The SDs were found to be amorphous, thermodynamically and physicochemically stable. Scanning electron microscopy of the formulations revealed a surface, indicating absence of crystallinity. The drug content was found to be in the range of 98.16±1.3 to 99.98±1.1%. The dissolution performance of the extrudates was compared with that of the pure drug, and substantial improvement was observed in the order of SOL-PEG-8000>SOL-KF127>SOL only. In-vitro drug release rate was Higuchi matrix controlled, and the release rate mechanism was found to be non-Fickian. Stability studies over a period of 3 months indicated amorphous nature of drug in the formulation, and no significant deviations were observed in the drug content and in-vitro drug dissolution characteristics.
Conclusion Hot melt extrusion technology promises an ideal platform for enhancing the solubility and dissolution of poorly water-soluble drugs. The results obtained suggest that olmesartan medoxomil in the form of SDs has potential for oral drug delivery and could be an efficacious approach for enhancing therapeutic potential. |
|
|
|
[FULL TEXT] [PDF]* |
|
 |
|