ORIGINAL ARTICLE
Year : 2017  |  Volume : 16  |  Issue : 1  |  Page : 37-42

Possible role of a compound identified from Pericampylus glaucus plant in controlling blood glucose in experimental animals


1 Department of Pharmacology and Toxicology, Faculty of Pharmacy, Lincoln University College, Selangor, Malaysia
2 Faculty of Civil and Environmental Engineering, UTHM Batu Pahat, Johor, Malaysia
3 Department of Zoology, University of Karachi, Karachi, Pakistan
4 Department of Pharmacy, Kohat University of Science and Technology, Kohat, Pakistan

Correspondence Address:
Muhammad Kifayatullah
Department of Pharmacology and Toxicology, Faculty of Pharmacy, Lincoln University College, No. 2, Jalan Stadium, SS 7/15, Petaling Jaya 47301, Selangor, Darul Ehsan
Malaysia
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/1687-4315.205824

Rights and Permissions

Objective The aim of the present research work was to determine the possible mechanism of an active fraction identified from Pericampylus glaucus plant in controlling blood glucose in experimental animals. Materials and methods The effect of an active fraction from P. glaucus on intestinal absorption of glucose at a dose of 50 mg/kg (body weight) was investigated using an in-vivo method. The identification of the compound was carried out with gas chromatography mass spectrometry followed by 1H nuclear magnetic resonance. The active fraction and standard drug were given daily for 7 days. The animal groups were anesthetized through intraperitoneally injection with sodium pental at a dose of 40 mg/kg (body weight) after they were made to fast overnight to evaluate the effect of the active fraction on the absorption of glucose in comparison with the diabetic group. Results and discussions A single dose of 50 mg/kg (body weight) of the active fraction and standard drug acarbose produced significant (P<0.001) attenuations in the intestinal absorption of glucose as compared with the diabetic group. The amount of glucose absorbed was 94.05±0.9 mg/g tissue (weight) in the diabetic group, whereas that absorbed in the active fraction-treated group was 55.80±1.2 mg/g tissue (weight). However, the animals treated with standard drug acarbose showed a significant reduction in glucose absorption rate at 38.21±2.5 mg/g tissue (weight). The inhibition of glucose absorption by standard acarbose and active fraction was 59.37 and 40.66%, respectively, as compared with the diabetic control group. The gas chromatography mass spectrometry analysis indicated a single compound propanoic acid in plant sample. The molecular weight was 234, 1H nuclear magnetic resonance was 452 MHz, %area was 3.57, retention time was 2.990, and total area was 1 015 462. The molecular formula was C9H22O3Si at m/z 73 (high resolution). The presence of this compound in P. glaucus might be responsible for the inhibition of glucose absorption by blocking Na+, K+ ATPases activity. Conclusion The present experiment confirmed reduced glucose absorption rate and the antidiabetic activity is due to this possible mechanism.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed261    
    Printed10    
    Emailed0    
    PDF Downloaded79    
    Comments [Add]    

Recommend this journal